Copied to
clipboard

G = C3×C322C16order 432 = 24·33

Direct product of C3 and C322C16

direct product, metabelian, soluble, monomial, A-group

Aliases: C3×C322C16, C333C16, C323C48, (C3×C6).3C24, (C3×C12).7C12, (C32×C6).3C8, (C32×C12).2C4, C324C8.4C6, C12.10(C32⋊C4), C6.4(C322C8), C4.2(C3×C32⋊C4), C2.(C3×C322C8), (C3×C324C8).1C2, SmallGroup(432,412)

Series: Derived Chief Lower central Upper central

C1C32 — C3×C322C16
C1C32C3×C6C3×C12C324C8C3×C324C8 — C3×C322C16
C32 — C3×C322C16
C1C12

Generators and relations for C3×C322C16
 G = < a,b,c,d | a3=b3=c3=d16=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

2C3
2C3
4C3
4C3
2C6
2C6
4C6
4C6
2C32
2C32
4C32
4C32
9C8
2C12
2C12
4C12
4C12
2C3×C6
2C3×C6
4C3×C6
4C3×C6
9C16
6C3⋊C8
6C3⋊C8
9C24
2C3×C12
2C3×C12
4C3×C12
4C3×C12
9C48
6C3×C3⋊C8
6C3×C3⋊C8

Smallest permutation representation of C3×C322C16
On 48 points
Generators in S48
(1 43 27)(2 44 28)(3 45 29)(4 46 30)(5 47 31)(6 48 32)(7 33 17)(8 34 18)(9 35 19)(10 36 20)(11 37 21)(12 38 22)(13 39 23)(14 40 24)(15 41 25)(16 42 26)
(2 44 28)(4 30 46)(6 48 32)(8 18 34)(10 36 20)(12 22 38)(14 40 24)(16 26 42)
(1 43 27)(2 44 28)(3 29 45)(4 30 46)(5 47 31)(6 48 32)(7 17 33)(8 18 34)(9 35 19)(10 36 20)(11 21 37)(12 22 38)(13 39 23)(14 40 24)(15 25 41)(16 26 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,43,27)(2,44,28)(3,45,29)(4,46,30)(5,47,31)(6,48,32)(7,33,17)(8,34,18)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,41,25)(16,42,26), (2,44,28)(4,30,46)(6,48,32)(8,18,34)(10,36,20)(12,22,38)(14,40,24)(16,26,42), (1,43,27)(2,44,28)(3,29,45)(4,30,46)(5,47,31)(6,48,32)(7,17,33)(8,18,34)(9,35,19)(10,36,20)(11,21,37)(12,22,38)(13,39,23)(14,40,24)(15,25,41)(16,26,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,43,27)(2,44,28)(3,45,29)(4,46,30)(5,47,31)(6,48,32)(7,33,17)(8,34,18)(9,35,19)(10,36,20)(11,37,21)(12,38,22)(13,39,23)(14,40,24)(15,41,25)(16,42,26), (2,44,28)(4,30,46)(6,48,32)(8,18,34)(10,36,20)(12,22,38)(14,40,24)(16,26,42), (1,43,27)(2,44,28)(3,29,45)(4,30,46)(5,47,31)(6,48,32)(7,17,33)(8,18,34)(9,35,19)(10,36,20)(11,21,37)(12,22,38)(13,39,23)(14,40,24)(15,25,41)(16,26,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,43,27),(2,44,28),(3,45,29),(4,46,30),(5,47,31),(6,48,32),(7,33,17),(8,34,18),(9,35,19),(10,36,20),(11,37,21),(12,38,22),(13,39,23),(14,40,24),(15,41,25),(16,42,26)], [(2,44,28),(4,30,46),(6,48,32),(8,18,34),(10,36,20),(12,22,38),(14,40,24),(16,26,42)], [(1,43,27),(2,44,28),(3,29,45),(4,30,46),(5,47,31),(6,48,32),(7,17,33),(8,18,34),(9,35,19),(10,36,20),(11,21,37),(12,22,38),(13,39,23),(14,40,24),(15,25,41),(16,26,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])

72 conjugacy classes

class 1  2 3A3B3C···3H4A4B6A6B6C···6H8A8B8C8D12A12B12C12D12E···12P16A···16H24A···24H48A···48P
order12333···344666···688881212121212···1216···1624···2448···48
size11114···411114···4999911114···49···99···99···9

72 irreducible representations

dim1111111111444444
type+++-
imageC1C2C3C4C6C8C12C16C24C48C32⋊C4C322C8C3×C32⋊C4C322C16C3×C322C8C3×C322C16
kernelC3×C322C16C3×C324C8C322C16C32×C12C324C8C32×C6C3×C12C33C3×C6C32C12C6C4C3C2C1
# reps11222448816224448

Matrix representation of C3×C322C16 in GL4(𝔽97) generated by

61000
06100
00610
00061
,
10012
01018
003573
00061
,
61000
035066
003573
00061
,
27010
89000
47100
380070
G:=sub<GL(4,GF(97))| [61,0,0,0,0,61,0,0,0,0,61,0,0,0,0,61],[1,0,0,0,0,1,0,0,0,0,35,0,12,18,73,61],[61,0,0,0,0,35,0,0,0,0,35,0,0,66,73,61],[27,89,47,38,0,0,1,0,1,0,0,0,0,0,0,70] >;

C3×C322C16 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes_2C_{16}
% in TeX

G:=Group("C3xC3^2:2C16");
// GroupNames label

G:=SmallGroup(432,412);
// by ID

G=gap.SmallGroup(432,412);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,-2,-3,3,42,58,80,14117,691,18822,2372]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^16=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C3×C322C16 in TeX

׿
×
𝔽